45+25t+3t^2=

Simple and best practice solution for 45+25t+3t^2= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45+25t+3t^2= equation:


Simplifying
45 + 25t + 3t2 = 0

Solving
45 + 25t + 3t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
15 + 8.333333333t + t2 = 0

Move the constant term to the right:

Add '-15' to each side of the equation.
15 + 8.333333333t + -15 + t2 = 0 + -15

Reorder the terms:
15 + -15 + 8.333333333t + t2 = 0 + -15

Combine like terms: 15 + -15 = 0
0 + 8.333333333t + t2 = 0 + -15
8.333333333t + t2 = 0 + -15

Combine like terms: 0 + -15 = -15
8.333333333t + t2 = -15

The t term is 8.333333333t.  Take half its coefficient (4.166666667).
Square it (17.36111111) and add it to both sides.

Add '17.36111111' to each side of the equation.
8.333333333t + 17.36111111 + t2 = -15 + 17.36111111

Reorder the terms:
17.36111111 + 8.333333333t + t2 = -15 + 17.36111111

Combine like terms: -15 + 17.36111111 = 2.36111111
17.36111111 + 8.333333333t + t2 = 2.36111111

Factor a perfect square on the left side:
(t + 4.166666667)(t + 4.166666667) = 2.36111111

Calculate the square root of the right side: 1.536590743

Break this problem into two subproblems by setting 
(t + 4.166666667) equal to 1.536590743 and -1.536590743.

Subproblem 1

t + 4.166666667 = 1.536590743 Simplifying t + 4.166666667 = 1.536590743 Reorder the terms: 4.166666667 + t = 1.536590743 Solving 4.166666667 + t = 1.536590743 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-4.166666667' to each side of the equation. 4.166666667 + -4.166666667 + t = 1.536590743 + -4.166666667 Combine like terms: 4.166666667 + -4.166666667 = 0.000000000 0.000000000 + t = 1.536590743 + -4.166666667 t = 1.536590743 + -4.166666667 Combine like terms: 1.536590743 + -4.166666667 = -2.630075924 t = -2.630075924 Simplifying t = -2.630075924

Subproblem 2

t + 4.166666667 = -1.536590743 Simplifying t + 4.166666667 = -1.536590743 Reorder the terms: 4.166666667 + t = -1.536590743 Solving 4.166666667 + t = -1.536590743 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-4.166666667' to each side of the equation. 4.166666667 + -4.166666667 + t = -1.536590743 + -4.166666667 Combine like terms: 4.166666667 + -4.166666667 = 0.000000000 0.000000000 + t = -1.536590743 + -4.166666667 t = -1.536590743 + -4.166666667 Combine like terms: -1.536590743 + -4.166666667 = -5.70325741 t = -5.70325741 Simplifying t = -5.70325741

Solution

The solution to the problem is based on the solutions from the subproblems. t = {-2.630075924, -5.70325741}

See similar equations:

| -7(8-6p)=-16+2p | | 2x+5+3x=30 | | 1.2y+2.4x+0.5=0 | | -42=6(3+3n)+2n | | =4x+5 | | 0.1y+2x+4=0 | | 3x^4-x^3-27x^2+9x=0 | | 4x+2x-2=0 | | 5y-0.66666x+1.2=0 | | -3/4=-5/8 | | 12x-5x=14 | | 10=y-16 | | 0.8y+0.3333x-1.5=0 | | -4(2x+7)=-3x+2 | | 2x^3-16x+30x= | | 3(q-20)+2=5q-7-29 | | -28=7(-8+4) | | 6y+3x-0.5=0 | | 6y-4x=16+2x | | 6-3k=-(k+2)-6 | | x+(x+2)=50 | | 5(-2x+8)=-x+22 | | 3n=4(35-n) | | 5x-14x=-36 | | 5u^2+3=-16u | | (23+3x)+(8x-41)=15 | | x+(x+1)=50 | | x+(x+1)=-50 | | 2x^2+4y=20 | | 5(x-1)=40 | | 3(t-6)+5t=4(2t+5)-12 | | 13x-5=5x+11 |

Equations solver categories